Discovering Top-k Probabilistic Frequent Itemsets from Uncertain Databases

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mining Frequent Itemsets over Uncertain Databases

In recent years, due to the wide applications of uncertain data, mining frequent itemsets over uncertain databases has attracted much attention. In uncertain databases, the support of an itemset is a random variable instead of a fixed occurrence counting of this itemset. Thus, unlike the corresponding problem in deterministic databases where the frequent itemset has a unique definition, the fre...

متن کامل

Probabilistic top-k range query processing for uncertain databases

Query processing over uncertain data is very important in many applications due to the existence of uncertainty in real-world data. In this paper, we propose a novel and important query for uncertain data, namely probabilistic top-(k, l) range (PTR) query, which retrieves l uncertain tuples that are expected to meet score range constraint [s1, s2] and have the maximum top-k probabilities but no...

متن کامل

Mining Frequent Gradual Itemsets from Large Databases

Mining gradual rules plays a crucial role in many real world applications where huge volumes of complex numerical data must be handled, e.g., biological databases, survey databases, data streams or sensor readings. Gradual rules highlight complex order correlations of the form “The more/less X, then the more/less Y ”. Such rules have been studied since the early 70’s, mostly in the fuzzy logic ...

متن کامل

Efficient Incremental Mining of Top-K Frequent Closed Itemsets

In this work we study the mining of top-K frequent closed itemsets, a recently proposed variant of the classical problem of mining frequent closed itemsets where the support threshold is chosen as the maximum value sufficient to guarantee that the itemsets returned in output be at least K. We discuss the effectiveness of parameter K in controlling the output size and develop an efficient algori...

متن کامل

Discovering Probabilistic Frequent Sequential Patterns in Uncertain Databases under Systolic Tree

Uncertain data are intrinsic in many real-world applications such as mobile tracking and environment surveillance. Mining sequential patterns from imprecise data, such as those data arising from GPS trajectories and sensor readings are important for discovering hidden knowledge in such applications. We establish two uncertain sequence data models abstracted from many real-life applications invo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Procedia Computer Science

سال: 2017

ISSN: 1877-0509

DOI: 10.1016/j.procs.2017.11.482